Volcano activity

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.
Earth's volcanoes occur because its crust is broken into 17 major, rigid tectonic plates that float on a hotter, softer layer in its mantle.[1] Therefore, on Earth, volcanoes are generally found where tectonic plates are diverging or converging. For example, a mid-oceanic ridge, such as the Mid-Atlantic Ridge, has volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has volcanoes caused by convergent tectonic plates coming together. Volcanoes can also form where there is stretching and thinning of the crust's interior plates, e.g., in the East African Rift and the Wells Gray-Clearwater volcanic field and Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "plate hypothesis" volcanism.[2] Volcanism away from plate boundaries has also been explained as mantle plumes. These so-called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Volcanoes are usually not created where two tectonic plates slide past one another. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. One such hazard is that volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature; the melted particles then adhere to the turbine blades and alter their shape, disrupting the operation of the turbine. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere (or troposphere); however, they also absorb heat radiated up from the Earth, thereby warming the upper atmosphere (or stratosphere). Historically, so-called volcanic winters have caused catastrophic famines.

Internal structure

Stratovolcanoes or composite volcanoes are tall conical mountains composed of lava flows and other ejecta in alternate layers, the strata that gives rise to the name. Stratovolcanoes are also known as composite volcanoes because they are created from multiple structures during different kinds of eruptions. Strato/composite volcanoes are made of cinders, ash, and lava. Cinders and ash pile on top of each other, lava flows on top of the ash, where it cools and hardens, and then the process repeats. Classic examples include Mt. Fuji in Japan, Mayon Volcano in the Philippines, and Mount Vesuvius and Stromboli in Italy. Throughout recorded history, ash produced by the explosive eruption of stratovolcanoes has posed the greatest volcanic hazard to civilizations. Not only do stratovolcanoes have greater pressure build up from the underlying lava flow than shield volcanoes, but their fissure vents and monogenetic volcanic fields (volcanic cones) have more powerful eruptions, as they are many times under extension. They are also steeper than shield volcanoes, with slopes of 30–35° compared to slopes of generally 5–10°, and their loose tephra are material for dangerous lahars.[8] Large pieces of tephra are called volcanic bombs. Big bombs can measure more than 4 feet(1.2 meters) across and weigh several tons

See diagram Download PDF


Stromboli dal satellite Ten active volcanoes are present in the Italian territory, "active" in that they gave manifestations in the last 10,000 years. Etna and Stromboli only have persistent activities, that is they erupt continuously or with intervals of months or a few years. Nevertheless, all the above listed volcanoes can produce eruptions within medium-long term.
These volcanic systems are monitored via integrated multiparametric systems. The collection of data about activity status of a volcano is supplemented by the study of data that have been collected during significant eruptions.


Stromboli is considered one of the most active volcanoes in the world and is characterized by persistent explosive activity , just call Strombolian , interrupted only by occasional episodes of more intense activity , accompanied by lava flows , as recently occurred in 1975 , in 1985 , in 2003 and 2007.

Great things are done when men and mountains meet.

William Blake